Sains Malaysiana 52(9)(2023):2713-2723

http://doi.org/10.17576/jsm-2023-5209-19

 

Photoreforming of Glycerol Catalyzed by CuO/TiO2 Supported on Hydroxyapatite

(Pembentukan Semula Gliserol Pemangkin oleh Cuo/Tio2 Disokong pada Hidroksiapatit)

 

DAMRONG ADAM1, NETNAPID ONGSUWAN2, & SAOWAPA CHOTISUWAN1,*

 

1Department of Science, Faculty of Science and Technology, Prince of Songkla University, Rusamilae, Pattani, Thailand

2Department of Food Science and Nutrition, Department of Science, Faculty of Science and Technology, Prince of Songkla University, Rusamilae, Pattani, Thailand

 

Received: 23 March 2023/Accepted: 15 August 2023

 

Abstract

Waste bovine bones can be used as a source to produce hydroxyapatite (HAp), which is a good organic adsorbent and used as a support material for metal oxide photocatalysts. In this work, HAp powders were prepared from calcination of bovine bones at 900 °C for 2 h and used as supporting material for a TiO2 photocatalyst incorporating CuO. The hexagonal HAp particles were characterized using Fourier transformed infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The 50 wt% TiO2 and 1 wt% CuO/TiO2 supported on HAp photocatalysts were synthesized by the co-precipitation method and finally calcined at 450 °C for 4 h. The synthesized HAp and catalysts were characterized by FTIR, XRD, BET surface area analysis, SEM, and transmission electron microscopy (TEM). The photocatalytic performance of the synthesized catalysts was performed by photoreforming of glycerol at room temperature using 100 mL of 0.5 M glycerol solution under nitrogen atmosphere, irradiating with low-light intensity 20 W Mercury UV lamp for 7 h. The gaseous products catalyzed by the synthesized catalysts were analyzed using a gas chromatograph. The maximum hydrogen gas production from photoreforming of glycerol at this condition was obtained at 513.7 mmol gcat1 without carbon dioxide detection after catalyzing by CuO/TiO2/HAp catalyst.

 

Keywords: Glycerol; hydroxyapatite; photoreforming; titania

 

ABSTRAK

Sisa tulang lembu boleh digunakan sebagai sumber untuk menghasilkan hidroksiapatit (HAp), yang merupakan penyerap organik yang baik dan digunakan sebagai bahan sokongan untuk fotokatalis oksida logam.  Dalam kertas ini, serbuk HAp disediakan daripada kalsinasi tulang lembu pada suhu 900 °C selama 2 jam dan digunakan sebagai bahan sokongan untuk fotokatalis TiO2 yang menggabungkan CuO. Zarah HAp heksagon dicirikan menggunakan spektroskopi inframerah Fourier berubah (FTIR), pembelahan sinar-X (XRD) dan mikroskop elektron imbasan (SEM). 50 wt% TiO2 dan 1 wt% CuO/TiO2 yang disokong pada fotokatalis HAp disintesis oleh kaedah pemendakan bersama dan akhirnya dikalsinasi pada 450 °C untuk 4 jam.  HAp dan pemangkin yang disintesis dicirikan oleh FTIR, XRD, ANALISIS kawasan permukaan BET, SEM dan mikroskop elektron penghantaran (TEM). Prestasi fotokatalisis pemangkin yang disintesis dilakukan dengan pembentukan semula foto gliserol pada suhu bilik menggunakan 100 mL 0.5 M. Penyelesaian gliserol di bawah atmosfera nitrogen, mengairi dengan keamatan cahaya rendah 20 W Mercury UV lampu untuk 7 jam. Produk gas yang pemangkin oleh pemangkin yang disintesis telah dianalisis menggunakan kromatograf gas. Pengeluaran gas hidrogen maksimum daripada pembentukan semula gliserol dalam keadaan ini diperoleh pada 513.7 mmol gcat-1 tanpa pengesanan karbon dioksida selepas pemangkin oleh pemangkin CuO/TiO2/HAp.

 

Kata kunci: Gliserol; hidroksiapatit; pembentukan semula; titania

 

REFERENCES

Akram, M., Ahmed, R., Shakir, I., Ibrahim, W.A.W. & Hussain, R. 2014. Extracting hydroxyapatite and its precursors from natural resources. Journal of Materials Science 49(4): 1461-1475. https://doi.org/10.1007/s10853-013-7864-x

Arcanjo, M.R.A., Silva, I.J., Rodríguez-Castellón, E., Infantes-Molina, A. & Vieira, R.S. 2017. Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst. Catalysis Today 279: 317-326. https://doi.org/10.1016/j.cattod.2016.02.015

Azri, N., Irmawati, R., Yda-Umar, U.I., Saiman, M.I. & Taufiq-Yap, Y.H. 2022. Effect of different metal modified dolomite catalysts on catalytic glycerol hydrogenolysis towards 1,2-propanediol. Sains Malaysiana 51(5): 1385-1398. https://doi.org/10.17576/jsm-2022-5105-10

Bano, N., Salwah Jikan, S., Basri, H., Adzila Abu Bakar, S.S. & Hussain Nuhu, A. 2017. Natural hydroxyapatite extracted from bovine bone. Journal of Science and Technology 9(2): 22-28. https://publisher.uthm.edu.my/ojs/index.php/JST/article/view/1990

Barakat, N.A.M., Khil, M.S., Omran, A.M., Sheikh, F.A. & Kim, H.Y. 2009. Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods. Journal of Materials Processing Technology 209(7): 3408-3415. https://doi.org/10.1016/j.jmatprotec.2008.07.040

Cheng, Z.H., Yasukawa, A., Kandori, K. & Ishikawa, T. 1998. FTIR study of adsorption of CO2 on nonstoichiometric calcium hydroxyapatite. Langmuir 14(23): 6681-6686. https://doi.org/10.1021/la980339n

Chong, R., Fan, Y., Du, Y., Liu, L., Chang, Z. & Li, D. 2018. Hydroxyapatite decorated TiO2 as efficient photocatalyst for selective reduction of CO2 with H2O into CH4. International Journal of Hydrogen Energy 43(49): 22329-22339. https://doi.org/10.1016/j.ijhydene.2018.10.045

Das Lala, S., Barua, E., Deb, P. & Deoghare, A.B. 2021. Physico-chemical and biological behaviour of eggshell bio-waste derived nano-hydroxyapatite matured at different aging time. Materials Today Communications 27: 102443. https://doi.org/10.1016/j.mtcomm.2021.102443

El Bekkali, C., Bouyarmane, H., El Karbane, M., Masse, S., Saoiabi, A., Coradin, T. & Laghzizil, A. 2018. Zinc oxide-hydroxyapatite nanocomposite photocatalysts for the degradation of ciprofloxacin and ofloxacin antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects 539: 364-370. https://doi.org/10.1016/j.colsurfa.2017.12.051

Escamilla, J.C., Hidalgo-Carrillo, J., Martín-Gómez, J., Estévez-Toledano, R.C., Montes, V., Cosano, D., Urbano, F.J. & Marinas, A. 2020. Hydrogen production through glycerol photoreforming on TiO2/mesoporous carbon: Influence of the synthetic method. Materials 13(17): 3800. https://doi.org/10.3390/MA13173800

Foroutan, R., Peighambardoust, S.J., Hosseini, S.S., Akbari, A. & Ramavandi, B. 2021. Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater. Journal of Hazardous Materials 413: 125428. https://doi.org/10.1016/j.jhazmat.2021.125428

Galadima, A. & Muraza, O. 2016. A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers 67: 29-44. https://doi.org/10.1016/j.jtice.2016.07.019

Haider, A.J., Jameel, Z.N. & Al-Hussaini, I.H.M. 2019. Review on: Titanium dioxide applications. Energy Procedia 157: 17-29. https://doi.org/10.1016/j.egypro.2018.11.159

Hernández-Barreto, D.F., Hernández-Cocoletzi, H. & Moreno-Piraján, J.C. 2022. Biogenic hydroxyapatite obtained from bone wastes using CO2-assisted pyrolysis and its interaction with glyphosate: A computational and experimental study. ACS Omega 7(27): 23265-23275. https://doi.org/10.1021/acsomega.2c01379

Hu, M., Yao, Z., Liu, X., Ma, L., He, Z. & Wang, X. 2018. Enhancement mechanism of hydroxyapatite for photocatalytic degradation of gaseous formaldehyde over TiO2/hydroxyapatite. Journal of the Taiwan Institute of Chemical Engineers 85: 91-97. https://doi.org/10.1016/j.jtice.2017.12.021

Karimi Estahbanati, M.R., Feilizadeh, M., Attar, F. & Iliuta, M.C. 2021. Current developments and future trends in photocatalytic glycerol valorization: Process analysis. Reaction Chemistry and Engineering 6(2): 197-219. https://doi.org/10.1039/d0re00382d

Khoo, W., Nor, F.M., Ardhyananta, H. & Kurniawan, D. 2015. Preparation of natural hydroxyapatite from bovine femur bones using calcination at various temperatures. Procedia Manufacturing 2: 196-201. https://doi.org/10.1016/j.promfg.2015.07.034

Kozlova, E.A., Gromov, N.V., Saraev, A.A., Kaichev, V.V., Gromov, N.V., Medvedeva, T.B., Saraev, A.A. & Kaichev, V.V. 2020. Comparative study of photoreforming of glycerol on Pt/TiO2 and CuOx/TiO2. Materials Letters 283: 128901. https://doi.org/10.1016/j.matlet.2020.128901

LeGeros, R.Z. 1988. Calcium phosphate materials in restorative dentistry: A review. Advances in Dental Research 2(1): 164-180. https://doi.org/10.1177/08959374880020011101

Liu, R., Yoshida, H., Fujita, S. & Arai, M. 2014. Photocatalytic hydrogen production from glycerol and water with NiOx/TiO2 catalysts. Applied Catalysis B: Environmental 144: 41-45. https://doi.org/10.1016/j.apcatb.2013.06.024

Liu, Y., Wu, M., Rempel, G.L. & Ng, F.T.T. 2021. Glycerol hydrogenolysis to produce 1,2-propanediol in absence of molecular hydrogen using a Pd promoted Cu/MgO/Al2O3 catalyst. Catalysts 11(11): 1299. https://doi.org/10.3390/catal11111299

Lucchetti, R., Onotri, L., Clarizia, L., Di Natale, F., Di Somma, I., Andreozzi, R. & Marotta, R. 2017. Removal of nitrate and simultaneous hydrogen generation through photocatalytic reforming of glycerol over in situprepared zero-valent nano copper/P25. Applied Catalysis B: Environmental 202: 539-549. https://doi.org/10.1016/j.apcatb.2016.09.043

Martínez, F.M., Albiter, E., Alfaro, S., Luna, A.L., Colbeau-Justin, C., Barrera-Andrade, J.M., Remita, H. & Valenzuela, M.A. 2019. Hydrogen production from glycerol photoreforming on TiO2/HKUST-1 composites: Effect of preparation method. Catalysts 9(4): 1-12. https://doi.org/10.3390/catal9040338

Mohseni-Salehi, M.S., Taheri-Nassaj, E. & Hosseini-Zori, M. 2018. Effect of dopant (Co, Ni) concentration and hydroxyapatite compositing on photocatalytic activity of titania towards dye degradation. Journal of Photochemistry and Photobiology A: Chemistry 356: 57-70. https://doi.org/10.1016/j.jphotochem.2017.12.027

Montini, T., Monai, M., Beltram, A., Romero-Ocaña, I. & Fornasiero, P. 2016. H2 production by photocatalytic reforming of oxygenated compounds using TiO2-based materials. Materials Science in Semiconductor Processing 42: 122-130. https://doi.org/10.1016/j.mssp.2015.06.069

Nguyen Thi Truc, L., Hong, S. & No, K. 2019. Evaluation of the role of hydroxyapatite in TiO2/hydroxyapatite photocatalytic materials. Photocatalysts - Applications and Attributes. March. IntechOpen. https://doi.org/10.5772/intechopen.81092

Peter Etape, E., John Ngolui, L., Foba-Tendo, J., Yufanyi, D.M. & Victorine Namondo, B. 2017. Synthesis and characterization of CuO, TiO2, and CuO-TiO2 mixed oxide by a modified oxalate route. Journal of Applied Chemistry 2017: 4518654. https://doi.org/10.1155/2017/4518654

Ramirez-Gutierrez, C.F., Londoño-Restrepo, S.M., del Real, A., Mondragón, M.A. & Rodriguez-García, M.E. 2017. Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone. Ceramics International 43(10): 7552-7559. https://doi.org/10.1016/j.ceramint.2017.03.046

Safronova, T., Vorobyov, V., Kildeeva, N., Shatalova, T., Toshev, O., Filippov, Y., Dmitrienko, A., Gavlina, O., Chernega, O., Nizhnikova, E., Akhmedov, M., Kukueva, E. & Lyssenko, K. 2022. Inorganic powders prepared from fish scales. Ceramics 5(3): 484-498. https://doi.org/10.3390/ceramics5030037

Sang, H.X., Wang, X.T., Fan, C.C. & Wang, F. 2012. Enhanced photocatalytic H2 production from glycerol solution over ZnO/ZnS core/shell nanorods prepared by a low temperature route. International Journal of Hydrogen Energy 37(2): 1348-1355. https://doi.org/10.1016/j.ijhydene.2011.09.129

Seadira, T.W.P., Sadanandam, G., Ntho, T., Masuku, C.M. & Scurrell, M.S. 2018. Preparation and characterization of metals supported on nanostructured TiO2 hollow spheres for production of hydrogen via photocatalytic reforming of glycerol. Applied Catalysis B: Environmental 222: 133-145. https://doi.org/10.1016/j.apcatb.2017.09.072

Singh, N., Chakraborty, R. & Gupta, R.K. 2018. Mutton bone derived hydroxyapatite supported TiO2 nanoparticles for sustainable photocatalytic applications. Journal of Environmental Chemical Engineering 6(1): 459-467. https://doi.org/10.1016/j.jece.2017.12.027

Van Nguyen, T.T., Phung Anh, N., Ho, T.G.T., Pham, T.T.P., Nguyen, P.H.D., Do, B.L., Huynh, H.K.P. & Nguyen, T. 2022. Hydroxyapatite derived from salmon bone as green ecoefficient support for ceria-doped nickel catalyst for CO2 methanation. ACS Omega 7(41): 36623-36633. https://doi.org/10.1021/acsomega.2c04621

Wang, C., Cai, X., Chen, Y., Cheng, Z., Luo, X., Mo, S., Jia, L., Lin, P. & Yang, Z. 2017. Improved hydrogen production from glycerol photoreforming over sol-gel derived TiO2 coupled with metal oxides. Chemical Engineering Journal 317: 522-532. https://doi.org/10.1016/j.cej.2017.02.033

Yang, Z., Zhong, W., Chen, Y., Wang, C., Mo, S., Zhang, J., Shu, R. & Song, Q. 2020. Improving glycerol photoreforming hydrogen production over Ag2O-TiO2 catalysts by enhanced colloidal dispersion stability. Frontiers in Chemistry 8: 342. https://doi.org/10.3389/fchem.2020.00342

Yin, H., Zhang, C., Yin, H., Gao, D., Shen, L. & Wang, A. 2016. Hydrothermal conversion of glycerol to lactic acid catalyzed by Cu/hydroxyapatite, Cu/MgO, and Cu/ZrO2 and reaction kinetics. Chemical Engineering Journal 288: 332-343. https://doi.org/10.1016/j.cej.2015.12.010

 

*Corresponding author; email: saowapa.c@psu.ac.th

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous